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INTRODUCTION

The North Atlantic right whale Eubalaena glacialis
is one of the most closely studied mysticete whales in
the world (Kraus et al. 2005). Due to its endangered
status and slow population recovery rate (Caswell et
al. 1999), there has been great interest in tracking the
population and distribution of these whales within
their coastal habitats to assist in the implementation
of suitable management strategies that minimize the
risk of vessel collisions or entanglement in fishing
gear (Kraus et al. 2005). 

Several methods have been used to monitor this
species, including traditional visual vessel and aerial

surveys as well as marine passive acoustic monitor-
ing (PAM) (Brown et al. 2007, Van Parijs et al. 2009).
PAM utilizes recorded acoustic data from either
manned recorders, such as a hydrophone towed be -
hind a vessel, or unmanned, autonomous recorders
(Zimmer 2011, Sousa-Lima et al. 2013). From a
methodological standpoint, autonomous recorders
are particularly useful in the marine environment as
they allow continuous, long-term monitoring regard-
less of light or weather conditions (Mellinger et al.
2007b, Au & Hastings 2010). PAM can be used to
detect vocalizations and provide insight into seasonal
habitat use and movement patterns, making it an
excellent tool for remote monitoring of vocal endan-
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mammals through their vocalizations. While call detection provides information on species pres-
ence, additional information may be contained within the vocalizations that could provide more
information regarding the demographics and/or number of individuals in a particular area based
on passive acoustic detections. The North Atlantic right whale Eubalaena glacialis produces a
stereotyped upswept call, termed the upcall, that is thought to function as a long-distance contact
call in this species. As such, the call is likely to contain cues providing information about the indi-
vidual producing it. The goal of this study was to test whether the right whale upcall could poten-
tially encode information related to the identity and age of the caller. Using upcalls recorded from
14 known individuals through non-invasive suction cup archival acoustic tags, we demonstrate
that the upcall does contain sufficient information to discriminate individual identity and age
class, with average classification levels of 72.6 and 86.1%, respectively. Parameters  measured
from the fundamental frequency, duration, and formant structure were most important for dis-
crimination among individuals. This study is the first step in demonstrating the feasibility of
obtaining additional data from passive acoustic monitoring to aid in the conservation efforts for
this highly endangered species.
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gered species (Mellinger et al. 2007b, Van Parijs et
al. 2009). There is growing interest in the use of PAM
for greater insight into population ecology, including
inferring behavioral activities based on sound types
and obtaining robust estimates of the density of indi-
viduals in a given location in both terrestrial and
marine habitats (Blumstein et al. 2011, Marques et al.
2013). Multiple sensors may be used to localize and
track calling individuals, providing an estimate of the
number of calling animals (Van Parijs et al. 2009,
Stanistreet et al. 2013). Density estimation is also pos-
sible from single sensors via a cue counting approach
using known call rates (Dawson & Efford 2009, Küsel
et al. 2011, Marques et al. 2011). If the recorded
vocalizations also contain measurable differences
among individuals, these differences can improve
density estimation, providing information on the
minimum number of calling individuals and adding
to estimates obtained from cue counting or other
methods (Terry et al. 2005).

Individually distinctive acoustic signals are com-
mon across vertebrate taxa (Reby et al. 1998, Bee et
al. 2001, Christie et al. 2004, Clemins et al. 2005,
Gillam & Chaverri 2012). Studies of individual dis-
tinctiveness often focus on vocalizations produced
within specific contexts in which the receiver is likely
to benefit from being able to discriminate among
individuals, such as alarm calls (Blumstein & Munos
2005), reproductive calls (Vannoni & McElligott
2007), or parent−offspring calls (Charrier et al. 2009).
Signal individuality, however, can occur without re -
quiring receiver discrimination (Tibbetts & Dale
2007). In mammals, individual differences in the
physical traits of the vocal production anatomy con-
tribute to corresponding variations in the calls. These
differences can be evaluated by targeting particular
acoustic measurements, including the fundamental
frequency and formants — broad spectral peaks re -
sulting from the filtering effect of the vocal tract
(Titze 2000). Throughout this article, we use the term
‘formant’ to refer to the broad spectral peaks that
result in emphasis of the amplitudes of subsets of har-
monics of the fundamental frequency of a call. When
characterizing differences among individuals pro-
ducing the same call types, a combination of funda-
mental frequency and formant measurements is
especially useful (Reby et al. 1998, 2005, Bacho -
rowski & Owren 1999, Vannoni & McElligott 2007,
Charlton et al. 2009, Taylor & Reby 2010). Following
research into human speaker recognition (Kinnunen
& Li 2010), multiple classification methods have been
developed to use these measurements of acoustic
features to discriminate among individuals: hidden

Markov models (e.g. Reby et al. 2006, Nichols et al.
2010), neural networks (e.g. Peake & McGregor
2001, Terry & McGregor 2002), and most frequently,
discriminant function analysis (DFA) (e.g. Gillam &
Chaverri 2012, Cinková & Policht 2014, Mumm et al.
2014).

Within marine mammals, individuality has been
demonstrated in both pinniped and cetacean vocal
behavior. This applies to all pinniped species that
have been tested (Insley et al. 2003): sub-Antarctic
fur seals Arctocephalus tropicalis (Charrier & Har-
court 2006), Australian sea lions Neophoca cinerea
(Gwilliam et al. 2008), Weddell seals Leptonychotes
weddellii (Van Opzeeland et al. 2012) and several
cetacean species including humpback whales
Megaptera novaeangliae (Hafner et al. 1979), killer
whales Orcinus orca (Nousek et al. 2006, Nichols et
al. 2010, Kremers et al. 2012), sperm whales Physeter
macrocephalus (Antunes et al. 2011), and bottlenose
dolphins Tursiops truncatus (Caldwell & Caldwell
1965, Sayigh et al. 2007). Signature whistles of bot-
tlenose dolphins are perhaps the most well-known of
these examples, partially due to the dramatic differ-
ences in fundamental frequency contours among
individuals (Janik & Sayigh 2013). Typically, how-
ever, acoustic differences among individuals are
much more subtle and require several acoustic meas-
urements to achieve statistical discrimination. De -
spite the precedent for vocal individuality within
marine mammals, to our knowledge there has only
been a single published quantitative assessment of
individual distinctiveness in calls of any mysticete
whale: an analysis conducted using songs of hump-
back whales recorded from adult males (Hafner et al.
1979).

North Atlantic right whales produce a variety of
sounds, which have been extensively studied (Mat -
thews et al. 2001, Parks & Tyack 2005, Parks et al.
2011). The upcall, originally described in southern
right whales Eubalaena australis (Clark 1982), is a
stereotyped call within the repertoire of North Atlan -
tic right whales, produced by all age classes and both
sexes, and thought to function as a long-distance
contact call (Parks & Clark 2007). This call is also the
most commonly used in PAM studies to detect the
presence of right whales in different habitat areas
(e.g. Mellinger et al. 2007a, Van Parijs et al. 2009,
Morano et al. 2012).

The goal of this study was to explore the potential
for individual variation within the upcall of the North
Atlantic right whale. We selected the upcall for 3 rea-
sons. (1) It is thought to function as a long-range con-
tact call (Clark 1982). (2) It is the predominant call
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type used in PAM of North Atlantic right whales
(Mellinger et al. 2007a). (3) It is produced by all age
classes and both sexes, allowing an assessment of the
same call type across all individuals (Parks et al.
2011). Predictable variation in signal characteristics
by individual or age class could provide additional
insight into the ecology and aid in the management
of this species.

MATERIALS AND METHODS

Data collection

Acoustic tag recordings

Data were collected from North Atlantic right
whales using suction-cup-attached digital archival
acoustic recording tags (DTAG: Johnson & Tyack
2003; Acousonde: Burgess 2009) as part of other
research efforts in 3 of the critical habitat areas for
this species (Kraus & Rolland 2007): the Bay of Fundy,
Canada (Nowacek et al. 2001, 2004, Johnson & Tyack
2003); Cape Cod Bay, Massachusetts, USA (Parks et
al. 2011); and the Southeastern US (Nousek-McGre-
gor 2010). Tags were equipped with a hydrophone,
3-axis accelerometer, magnetometer, and pressure
sensors (Nowacek et al. 2001, Johnson & Tyack
2003). Depending on the year of tagging and tag
type, acoustic data were sampled between 16 and
96 kHz. For this study, all acoustic data were re -
sampled to 16 kHz using AviSoft SASLab Pro v.5.2
(Avisoft Bioacoustics) prior to analysis. After a period
of behavioral observation and photo-identification to
determine the identity of a whale, tags were de -
ployed from small vessels using a carbon-fiber pole
according to methods described in Nowacek et al.
(2001, 2004).

Individual identification of tagged whales

Right whales have individually distinctive patterns
of rough patches of skin called callosities on their ros-
trum, mandibles, and near their blowhole (Kraus et
al. 1986). Photographs of tagged whales were com-
pared to a catalog of identified right whales main-
tained by the North Atlantic Right Whale Consortium
(Hamilton & Martin 1999, Right Whale Consortium
2015). The catalog includes information about each
whale’s sex as determined using either visual assess-
ment of the genital slit (Payne & Dorsey 1983) or
genetic information obtained via skin biopsy (Brown

et al. 1994). Exact age was only known if a right
whale was sighted with its mother during its first
year, but a minimum age for all other whales can be
estimated as the number of years elapsed since the
first sighting of the animal (Right Whale Consortium
2015). The average age of first calving for female
right whales is 9 yr (Payne & Dorsey 1983, Kraus &
Hatch 2001); thus for this study, whales were as -
signed to 2 age classes: ‘juvenile’, if their age at time
of tagging was known to be between 1 and 8 yr, and
‘adult’ if their exact age or minimum age at time of
tagging was 9 yr or greater.

Call selection and acoustic measurements

Spectrograms of complete recordings from tags
were visually and aurally inspected for the presence
of upcalls using the sound analysis program Raven
Pro v.1.5 (Cornell Bioacoustics Research Program).
Following Parks et al. (2011), we only selected up -
calls with a high signal-to-noise ratio (SNR) (i.e.
>10 dB) produced when the tagged whales were
observed to be alone during focal follows, providing
a high confidence that the call was produced by the
tagged whale.

Formant measurements

Without in situ observations of vocal physiology
while vocalizing, there is no way to confirm that the
spectral peaks seen in marine mammal vocalizations
result from the same mechanisms as the formants of
terrestrial mammals. However, there are structural
homologies between the vocal anatomy of terrestrial
mammals and mysticete whales (Reidenberg & Lait-
man 2007), and the spectral structure of mysticete
whale calls is consistent with observations of for-
mants in terrestrial mammals (Mercado et al. 2010,
Cazau et al. 2013). Harmonics are whole-number
multiples of the fundamental frequency of a signal,
and typically decrease in amplitude with increasing
frequency. Vocal tract resonances and filtering can
result in emphasis or de-emphasis of select frequen -
cy bands. Thus the frequency value of the peak
energy of the formants is independent of the funda-
mental frequency.

We measured formants in upcalls using the open
source speech analysis software Praat v.5.3.17
(Boersma & Weenik 2012). Praat applies a Gaussian-
like window and computes the linear predictive co -
efficients using Burg’s algorithm (Boersma & Weenik
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2012). Linear predictive coefficients represent data as
a combination of the spectral characteristics and the
excitation signals through the linear combination of
neighboring data points (Makhoul 1975). To remove
formants that are too low or high to be associated with
vocal tract resonances, Praat further removes all
measured  formants below a set value of 50 Hz and
above the maximum formant value minus 50 Hz, here
given as 5500 Hz (Boersma & Weenik 2012). We used
0.25 s segments centered on the midpoint of the call
to reduce the influence of background noise. In hu-
man speech analysis, similar segmentation is used to
ex tract formant values from vowels while avoiding
the influence of surrounding consonants (Rendall et
al. 2005). The frequency values of the formants were
automatically extracted from each 0.25 s clip using
the ‘Linear Predictive Coding (LPC): To Formant
(Burg)’ command within a custom Praat script. Ana -
lysis parameters were as follows: time step = 0.0
(auto), maximum number of formants = 5, maximum
formant = 5500 Hz, window length = 0.025 s, pre-em-
phasis from 50 Hz. Although only the first 3 formants
were used in the analysis, the maximum formant
value was set to 5 based on visual assessment of the
formant tracking performance in Praat. When using a
maximum formant value set to 3, the highest fre-
quency peak energy tracked by LPC did not corre-
spond to the approximate formant structure of the call
as visually assessed in the underlying spectrograms.

To address this concern, we set the maximum number
of formants to 5, forcing the LPC to extract 5 peaks
between 50 and 5500 Hz . We then retained the 3 for-
mants that corresponded to the spectral content of the
vocalization and excluded the 2 in consistently
tracked ‘false’ formants measured from spectral
peaks in the noise in frequencies above the vocaliza-
tion (i.e. no consistent formant structure across suc-
cessive time-steps). Pre-emphasis lessens the overall
effect of decreased energy at higher frequencies and
allows the LPC analysis to treat all frequencies with
equal weight. The mean formant frequency value for
each of the first 3 formants across the entire segment
was then used as the value of each formant for each
call (Table 1). Examples of spectrograms where the
formants are highlighted are shown in Fig. 1 for 2 in-
dividuals (juvenile male 3579 and adult female 1604).

Time−frequency measurements

Due to fluctuations in background noise, automa -
ted detection of the fundamental frequency in Praat
resulted in errant contours with occasional rapid
 frequency jumps that did not reflect the actual vocal-
ization being measured. Therefore, we developed a
custom script for MATLAB (Release 2012a; Math-
works) that allowed manual adjustment of automati-
cally ex tracted contours for subsequent measure-
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Measurement                                               Description

Minimum fundamental frequency (Hz)     Minimum value in frequency contour
Maximum fundamental frequency (Hz)    Maximum value in frequency contour
Start fundamental frequency (Hz)              First value in frequency contour
End fundamental frequency (Hz)               Last value in frequency contour
Mean fundamental frequency (Hz)            Mean value of frequency contour
Coefficient of variation of fundamental    The ratio of the standard deviation of the contour frequencies to the mean value 
frequency (Hz)                                            of the contour (a measure of variability)

Duration 95% (s)                                          Difference between time points marking 97.5 and 2.5% of spectrogram power 
                                                                       spectral density
Inflection point (%)                                      Relative time position of major inflection point within the upcall
Formants 1−3 (Hz)                                        Mean value of frequency measurements from first 3 formants for each call
Kurtosis of spectrum                                    A normalized measure of the peakedness of the frequency distribution 
                                                                       surrounding local maxima of the spectrum. A spectrum with pure tone 
                                                                       harmonics will have a higher kurtosis than a signal with more energy between 
                                                                       peaks of harmonics
Skewness of spectrum                                 A measure of asymmetry of the distribution of frequency values
Quartile harmonics (1−3)                             Frequency at which first, second, and third quartiles of total energy in call occur
Spectral entropy                                           A measure of shape of the frequency distribution. Lower values indicate 
                                                                       more tonal structure; higher values indicate a signal that more closely resembles 
                                                                       white noise

Table 1. Measurement variables used to discriminate upcalls of North Atlantic right whales Eubalaena glacialis by individual 
and age class
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ments in order to remove the effects of the noise
(Table 1). Cepstral analysis can be used to separate
the effects of source (vocal cords) and filter (vocal
tract) by taking the Inverse Fourier Transform of the
logarithm of the estimated spectrum of a signal, com-
pressing the dynamic range, and reducing amplitude
differences in the waveform (Reby et al. 2006). Since
the method inverts the Fourier Transform, the inde-
pendent variable of the cepstrum is known as the
‘quefrency’, a term that inverts ‘frequency’; ‘spectro-
gram’ similarly becomes ‘cepstrogram.’ Contours
were detected by determining the peak value in the
cepstrum for each time step in a spectrogram,
defined as the first peak after the initial decay that
represents the initial sound source excitation fol-
lowed by the decay of the vocal tract filter. Thus, the
quefrency domain represents the combination of the
sound source and vocal tract filter through addition
rather than convolution, with lower values represent-
ing the vocal tract infor mation; the sound source
excitation (fundamental frequency) can be seen as a
‘bump’ at higher quefrencies. Cepstrograms were

calculated using 2048 points, 99% overlap, and a
Hann window. A longer window length with high
overlap effectively smoo thed the contour, limiting
contour inflections and slopes to those most charac-
teristic of the vocalization. The peak level of the cep-
strogram at each time point was identified. The que-
frency contour generated from the peak cepstral
values was smoothed with a moving window aver-
age. Quefrency values were then converted to fre-
quency. If necessary, the contours were manually
adjusted to track the fundamental frequency. Spec-
trograms were calculated using 2048 points, overlap
of 99%, and a Hann window resulting in frequency
resolution of 3.9 Hz and temporal resolution of
1.25 ms. Analyses were limited to the middle 95%
energy of the full bandwidth of the recording. The
inflection point, defined in this study as the begin-
ning of the predominant rise in fundamental fre-
quency, was selected manually using a graphical
user interface (Fig. 2).

Statistical analysis

Preliminary assessment of measurement variables

Normality was visually assessed using Q−Q plots
generated in SPSS v.22.0 (IBM). Normally distributed
variables were entered into a multivariate analysis of
variance (MANOVA) in R v.2.15.2 (R Development
Core Team 2012) using age class or individual as the
dependent variable. If the MANOVA was significant
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Fig. 1. Spectrograms of 2 North Atlantic right whale Eubala -
ena glacialis individuals, including higher frequency harmo -
nics and formant structure visible as emphasized frequency
bands, with arrows marking the lowest 3 formant frequen-
cies for upcalls. Spectrograms were calculated using 1024
points, overlap of 50%, and a Hann window resulting in fre-
quency resolution of 15.6 Hz and temporal resolution of 32 ms

Fig. 2. North Atlantic right whale Eubalaena glacialis upcall
showing detail of the fundamental frequency contour (white
dashed line) and manually selected inflection point indicated
with black arrow. Spectrograms were calculated using 1024
points, overlap of 50%, and a Hann window resulting in fre-
quency resolution of 15.6 Hz and temporal resolution of 32 ms



Endang Species Res 30: 157–169, 2016

at α = 0.05, then separate analyses of variance
(ANOVAs) with Bonferroni corrections were con-
ducted to determine whether statistical differences
existed among classes for specific measurement vari-
ables prior to further analyses (Fig. 3).

Potential for individuality coding

Each variable was assessed in terms of its potential
for individuality coding (PIC) (Charrier et al. 2002).
PIC values represent the ratio of the coefficient of
variance for the entire dataset to the within-individual
coefficient of variance. Thus, a PIC value >1 indicates
that a particular variable exhibits greater inter-indi-
vidual than intra-individual variation, making it a
likely candidate for containing individually distinc tive
information (Charrier et al. 2002, Dreiss et al. 2014).

Discriminant function analysis

DFA assumptions are violated if all included vari-
ables are correlated with each other. We tested
 correlations among variables using principal compo-
nents analysis (PCA). PCA confirmed that some vari-
ables were correlated with each other but none were
correlated to all other variables. Therefore, since we
were interested in determining the specific variables
that were important in the discrimination process, we
followed Blumstein & Munos (2005) and included all
measurement variables in the analysis. We perfor -
med stepwise DFA in SPSS (v.22.0; IBM) to classify
calls to individual and age class. DFA classifies cases
to groups based on the greatest separation of func-
tions, with discriminant scores ranging from 0 to 1.
Stepwise DFA is a more conservative approach, as it
only in cludes the variables that are most important to

separating the groups and eliminates those that do
not provide additional discriminatory information
rather than using all possible variables simultane-
ously as in a full DFA (standard criteria used for this
analysis: F > 3.84 to enter, F < 2.71 to remove).

Discriminant functions were determined to be sig-
nificant (p < 0.05) according to a χ2 test with the null
hypothesis that the discriminant function is equal to
zero, or that addition of the function adds no further
discriminating ability (e.g. Boughman 1997). Impor-
tant variables were selected as variables included in
the final stepwise DFA that also had a correlation
value ≥0.5 with a significant discriminant function.

Our sample size did not allow for separate training
and testing sets; therefore, we used leave-one-out
cross- validation to assess the strength of our classifi-
cation results. In leave-one-out analysis, 1 case is re -
moved from analysis, and discriminant functions are
calculated based on the remaining cases. The with-
held case is assigned to a group based on these func-
tions; if the cross-validated classification results are
based on group distinctiveness then the withheld ca -
ses will be correctly assigned to their parent groups
at a greater-than-chance rate.

Due to the unequal number of calls represented by
each individual and each demographic category,
chance proportions for each analysis were calculated
according to the following formula:

where k is the number of individual whales or demo-
graphic categories, p is the proportion of the total
number of calls (N) represented by each whale or
demographic category, and a is the number of calls
assigned to that individual or category.

Prior probabilities for the DFA were based on
group size (no. of calls per individual or age class) in

∑=
=ˆ 1

c
p a

N
i
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Fig. 3. The process of iden -
tifying classes using MA NOVA,
ANOVA, potential for individu-
ality coding (PIC) and discrimi-
nant function analysis (DFA) as
used in the pre sent study. NS:

not significant at α = 0.05
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all analyses, thus allowing for the unbalanced group
sizes. We used the exact binomial test in R to assess
whether the percentage of correctly classified calls
differed from chance for each of the DFA classifica-
tion results.

The adult male whale demographic was repre-
sented by only a single individual with a large N
(93 calls), which could have influenced the results of
the analysis for individuality. Therefore, we removed
this individual from the analysis and re-ran the
ANOVA and DFA in its absence using the same cri-
teria as above for individual identification. As with
the full dataset, classification results excluding this
individual were then tested against chance values
using the exact binomial test in R.

RESULTS

A total of 14 whales had at least 3 upcalls that could
confidently be assigned to that individual (median
no. of upcalls ind.−1 = 9, range = 3 to 93). One whale
of unknown exact age (catalog #3360) could not be
definitively assigned to an age class based on its
mini mum age and was excluded from further analy-
ses concerning age class (Table 2).

Potential for variation

Each overall MANOVA was significant (p < 0.001)
whether using individual (df = 13,198) or age (df =
1,200) as the dependent variable. For the separate
ANOVAs, individual whales differed significantly in

all measurement variables, while only certain vari-
ables resulted in significant differences between the
2 age classes. Almost all variables were significant at
p < 0.05. For age, the significant variables (p < 0.05)
were inflection point, maximum fundamental fre-
quency, end fundamental frequency, coefficient of
variation of fundamental frequency, spectral entropy,
duration, and formant 2 (Table 3).

Potential for individuality coding

All variables had a median PIC > 1 (range: 1.15 to
1.94) and were subsequently used as independent
variables in the stepwise DFA for individual (see
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Age Sex Habitat EGNO Exact Minimum Tagging Focal Duration of 
class age (yr) age (yr) date (mm/dd/yy) upcalls recording (hh:mm:ss)

Adult Female BOF 2145 10 − 08/15/01 20 04:11:37
Adult Female CCB 1604 Unknown >29 04/26/15 12 00:40:00
Adult Female CCB 3101 9 − 04/05/10 11 04:02:56
Adult Female BOF 2413 11 − 08/03/05 9 16:26:35
Adult Female BOF 1241 23 − 08/01/05 8 00:20:00
Adult Female CCB 1703 28 − 04/30/15 8 03:53:46
Adult Female SEUS 2040 24 − 02/10/14 4 05:30:00
Adult Female CCB 1620 Unknown >29 04/25/15 3 01:04:49
Adult Male BOF 2350 Unknown >11 08/09/02 93 07:54:00
Juvenile Female BOF 3103 1 − 08/10/02 10 01:44:00
Juvenile Male SEUS 3442 2 − 01/21/06 15 01:21:00
Juvenile Male CCB 3579 4 − 04/17/09 11 04:02:26
Juvenile Male BOF 3323 2 − 07/29/05 9 01:54:40
Unknown Female BOF 3360 Unknown >2 08/14/05 10 09:00:00

Table 2. Tag records of North Atlantic right whales Eubalaena glacialis used in the analysis. EGNO: catalog number in the 
North Atlantic Right Whale Catalog; BOF: Bay of Fundy; CCB: Cape Cod Bay; SEUS: Southeast United States

Measurement Age

Inflection point (%) <0.01
Mean fundamental frequency (Hz) NS
Maximum fundamental frequency (Hz) <0.05
Minimum fundamental frequency (Hz) NS
Start fundamental frequency (Hz) NS
End fundamental frequency (Hz) <0.05
Coefficient of variation of fundamental <0.05
frequency (Hz)

Kurtosis of spectrum NS
Skewness of spectrum NS
Spectral entropy <0.001
Duration 95% (s) <0.001
Formant 1 (Hz) NS
Formant 2 (Hz) <0.01
Formant 3 (Hz) NS

Table 3. Results of separate ANOVAs for each variable for
age class of North Atlantic right whales Eubalaena glacialis.
Significant p-values are in bold; NS: not significant at α = 0.05
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Table S1 in the Supplement at www.int-res.com/
articles/suppl/n030p157_supp.pdf). A summary of all
measurement variables by individual and age class
can be found in Table S2 in the Supplement.

Discriminant function analysis

Stepwise DFA was able to correctly assign calls to
individual and age class at levels significantly greater
than chance (1-tailed binomial test using cross-
validated percentages, p < 0.001 for all analyses) (all
individuals: Table 4; excluding adult male: Table S3
in the Supplement).

Individuality

For individual, a total of 7 discriminant functions
were significant (Wilks’ lambda, p < 0.01 for all func-
tions) (Fig. 4). Important variables for individual dis-
crimination, in decreasing order of canonical correla-
tion coefficients were: mean fundamental frequency,
start fundamental frequency, second formant, coeffi-
cient of variation of the fundamental frequency, spec-
tral entropy, duration 95%, skewness of the spectrum,
and the percent time of the inflection point.

Age class

For age class, one discriminant function was used
to discriminate between the 2 groups (Fig. 5). The
important variables for age discrimination were the
spectral entropy and duration 95% (see Fig. S1 in the
Supplement).

DISCUSSION

The goal of this study was to investigate the poten-
tial for differentiating individual North Atlantic right

whales based on measurements of a
shared contact call type — the upcall.
Using stepwise DFA, calls were classi-
fied to the correct individual and age
class well above the level of classi fi -
cation expected by random chance. To
our knowledge, this is the first quanti-
tative assessment of acoustic variation
among individuals using a stereotyped
social call produced throughout the
year by all individuals (Parks et al.
2011) and represents only the second
such ana lysis of individuality in a
stereotyped call of any mysticete whale
(Hafner et al. 1979). As in studies of
terrestrial mammals (Reby et al. 1998,
Gamba et al. 2012), a combination of
measurements from the fundamental
frequency and the formants of the calls
were effective for discrimination
among individuals and groups. Our
classification accuracies for individual
identification of upcalls compared well
with other mammals such as northern
white rhinos Cerato the rium cottoni (N
= 6 rhinos, 74% cross-validated correct
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Grouping No. No. Adjusted % cor- Cross-
of of chance rectly validated 

whales calls classifi- classi- % correctly 
cation fied classified

Individual 14 212 22.25 76.9 72.6
Age
Adult 9 157
Juveniles 4 45
Total 13 202 65.37 87.6 86.1

Table 4. Classification results of discriminant function analy-
sis for North Atlantic right whale Eubalaena glacialis indi-
vidual and age class based on measurements of upcalls

Fig. 4. Canonical discriminant scores for first 3 discriminant functions (DF1 =
first discriminant function, DF2 = second discriminant function, DF3 = third
discriminant function) used to differentiate among individual North Atlantic
right whales Eubalaena glacialis. Correct classification after leave-one-out
cross-validation based on a total of 7 discriminant functions was 72.6%. Each
point represents a single upcall; colors indicate individual whales, and lines
are drawn from each call to the group centroid of canonical discriminant 

scores for that individual
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DFA classification) (Cinková & Policht 2014), giant ot-
ters Pteronura brasiliensis N = 9, 56.3% correctly
classified calls) (Mumm et al. 2014) and bottlenose
dolphins Tursiops truncatus (N = 5, 80% correctly
classified calls) (McCowan & Reiss 2001).

Spectral entropy was the most important variable
for discriminating between age class, followed by
duration. The higher value of spectral entropy in
juveniles suggests that adult calls should be more
tonal in nature, and that acoustic nonlinear phenom-
ena (Tyson et al. 2007) may be more prevalent in calls
of younger whales. Similarly, the importance of dura-
tion (with adults having longer calls than juveniles;
Fig. 6), follows the results of Parks et al. (2011) for
right whales as well as age-based differences in
vocalizations of other species (Harnsberger et al.
2008, Sousa-Lima et al. 2008). Given major changes
in body size that occur during maturation (Fortune et
al. 2012), it is unclear whether these differences in
signals are a result of body size differences, or physi-
cal maturation of the sound production mechanisms
in this species.

This study shows that even the ‘low frequency’ calls
of the North Atlantic right whale contain formant in-
formation up to 2.5 kHz, information that  contributes
to discrimination among individuals. Recording ef-
forts, however, still suffer from technical limitations:
especially with multiple simultaneous re corders, de-
ployment time is limited by battery life and available
data storage space. The tradeoffs of these practical
considerations often result in recor ders with sample
rates that are only sufficient to record the fundamental
frequency of a call of interest; for example, Mellinger
et al. (2007a) and Bort et al. (2015) were limited to

sample rates of 2 kHz for right whale monitoring.
When choosing sampling rates, researchers should
consider that there may be additional discrimination
possible if higher frequencies are included in auto no -
mously recorded datasets. Future work should incor-
porate higher sample rates for autonomous recording
of mysticetes, particularly as advances in technology
allow for larger storage and longer battery life.

There are a number of challenges to address before
the method of identifying individual right whales
using passive acoustics can be fully developed. One
of the limitations to this study was the lack of multi-
ple recordings of the same individual separated by
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Fig. 5. Canonical discriminant scores for the discriminant
function for age class of North Atlantic right whales Eubala -
ena glacialis. Correct classification after leave-one-out
cross-validation was 86.1% for age class. The overlap be-
tween adult and juvenile discriminant functions is shown 

with shading of the histograms

Fig. 6. Spectrograms highlighting the differences in upcalls
between age classes of North Atlantic right whale Eubala ena
glacialis, particularly emphasizing the shorter duration of ju-
venile whale upcalls (mean ± SD: juveniles = 0.76 ± 0.22 s;
adults = 1.09 ± 0.29 s). Male and female examples are in-
cluded to indicate that this difference occurs regardless of sex
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time and space. Without such separation, there is a
risk that idiosyncratic attributes of a particular day or
tagging event may have affected the calls of any
given individual. Furthermore, the duration of any
given recording may not have captured the full vari-
ability of the upcalls of an individual on a scale of
hours or days. At longer time scales, knowing how
whales change aspects of their identity signals as
they move through different habitats over the course
of a year, or if call parameters change over an indi-
vidual’s lifetime will also be necessary before incor-
porating vocal individuality within long-term moni-
toring efforts. Given the ability to discriminate
between age classes in this study, changes in vocal
parameters over an individual whale’s lifetime are
very likely and could be measured with repeated
recordings of the same animal throughout its life.

Sex differences are found in many other mammal
calls (Bachorowski & Owren 1999, Blumstein & Mu -
nos 2005, Charlton et al. 2009), and there may even
be an interaction between body size and sex in the
production of right whale upcalls. Only a single adult
male was included in our analyses, therefore we
could not assess calls for differences between the
sexes. Additional data are clearly needed from
males, particularly adults, to fully explore age and
sex differences in the upcall. This would further
enhance our understanding of call production in
right whales and improve the information available
from PAM surveys.

Our analysis was deliberately limited to calls ob -
tained from tags physically placed on the focal ani-
mals, in order to confidently assign vocalizations to
an individual for this proof-of-concept study. How-
ever, in the majority of PAM applications, right whale
calls are recorded by hydrophones, where distance
between the source whale and the recording unit
varies (Mellinger et al. 2007a, Van Parijs et al. 2009,
Matthews et al. 2014, Bort et al. 2015). This poses a
challenge to analysis because as an upcall propa-
gates through the environment, certain aspects of the
call will degrade or become distorted due to trans-
mission loss or multipath effects. For example, Mun -
ger et al. (2011) described propagation effects on the
upcalls of North Pacific right whales in a shallow
habitat (~70 m), resulting in distinct arrivals of the
call and corresponding multipath arrivals of time-
and frequency-distorted versions of the call at dis-
tances >20 km. This likely has direct consequences
for the use of any specific measurement as an iden -
tifying feature since acoustic characteristics of the
received call — including multipath signals — will
change over long distances.

Although suction cup tags are an excellent way to
ensure the identity of a caller, they do not allow
assessment of any propagation effects. Using a direc-
tional hydrophone or multiple recorders, it is possible
to assign calls to individual whales using localization
techniques and without using tags (e.g. Parks &
Tyack 2005). With such techniques, the propagation
of specific acoustic features, especially those which
are likely to encode individuality, could be measured
if the same individual were recorded simultaneously
using a tag and hydrophones at varying distances. In
king penguins Aptenodytes patagonicus (Aubin et al.
2000) and black-capped chickadees Poecile atrica -
pillus (Christie et al. 2004), the low-frequency call
components most useful for measuring individuality
were also the most robust to degradation from prop-
agation through the environment. Regardless of the
recognition capabilities of whales, propagation test-
ing would be useful to determine how the distinctive
features of the upcall propagate through the environ-
ment for purposes of monitoring this endangered
species.

Based on the results of this study, we suggest that
information is available within the upcall that can
allow for statistical determination of individual iden-
tity and age class. This has the potential to enhance
the information available through passive acoustic
monitoring of this species. Future work should ex -
plore the stability of these signals over distance,
increase the sample size to encompass repeat record-
ings and more individuals in each demographic
group, and attempt to assess the usefulness of the
information with respect to survey efforts.
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